
constant; f and F, arbitrary functions; S: and Sa, functions linearly related to the concen- 
trations; x, space coordinate; t, time; and ~, distribution factor. 
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RETRIEVAL OF THE BOUNDARY CONDITIONS FROM THE TEMPERATURE MEASUREMENTS 

AT POINTS INSIDE A SYSTEM OF PLANE DOUBLE-LAYER BODIES 

A. A. Shmukin, S. V. Pavlyuk, 
and N. M. Lazuchenkov 

UDC 536.24.02 

A reverse heat-conduction problem is reduced to in=egrating a system of ordinary 
differential equations by the method of smoothing splines. 

In many specific practical engineering problems there arises the situation where deter- 
mining the temperature and the thermal flux at external surfaces in systems of plane double- 
layer bodies requires measurement of the temperature as a function of time at internal points 
of the system [i]. We will consider =he rather general formulation of reverse boundary- 
value problems of heat conduction for double-layer plates with an ideal thermal contact at 
the joint. For obtaining correct solutions to the reverse heat-conduction problems we will 
use the solution to the Cauchy problem [2, 3] and the method of smoothing splines [4]. 

The heat-conduction equation in a Cartesian system of coordinates, independent for each 
plate, will be written as [5] 

OTh O~T~ 
----ek--, 0~T<oo, O ~ X ~ X ~ ,  (1) 

O~ OX 2 

where k = I, 2 is the consecutive number of each layer, X = x/Ro, T = aot/R~, ~k = ak/ao, 
X k = Rk/Ro, ao and Ro are arbitrary values of, respectively, the thermal diffusivity and 
the geometrical dimension, and R k is the thickness of the k-th layer. 

The conditions of ideal contact and the initial conditions will be stipulated as 

Ti[x=xp, = T~lx=x~, (2) 

+ ~___!_l OT~ llx=xB~- ~2 OT2 . ] 
- -  Ro OX Ro OX ]x=x p, ~' (3) 

Tkl~=o = %(X), (4) 

where in expression (3) the plus sign corresponds to systems of coordinates in series and the 
minus sign corresponds to systems of coordinates in opposition, ~k(X) in expression (4) char- 
acterizing a nonuniform temperature distribution. 

We assume that the heat transfer between the surface of the first plate layer and the 
ambient medium is subject to a boundary condition of the second kind 
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;~.~ OT~ ] = qi (.~), 

Ro OX Jx=o 

and the condition at the section of the other plate layer at point X = X* 

(5) 

(o < x~* <~ x~) is 

(6) T~b=x ~ = &,~(~) 

where fe,a(~) is a function of time known from experiments. 

The problem is to determine from Eqs. (1)-(6) the temperature functions within region 
D k = {(X, r): 0~ X~Xk, 0 < T'~<Tk} (k = i, 2), and the thermal flux at the external sur- 
face of ~he second plate layer. For constructing the solution to this problem we use the 
auxiliary solution to the noncharac~erlstic Cauchy problem [2, 3]. The Cauchy condition 
will be stipulated at points coinciding with the origins of coordinates (we consider systems 
of coordinates in series) 

T~b=0 =~(~), (7) 

(8) 
~ OT~ 

~ ~=o = q~(~)" 

The solution =o the Cauchy problem (i), ( 7 ) ,  (8), wri=ten in t he  form [2, 3] 

(9) 
(2n)! ~n (2n -+- 1)! 

n~0 n~0 

exists and is unique in the class of analytic functions [5]. 

In solution (9) functions fk(~) and qk(T) characterize the variation of temperature and 
thermal flux at the external surface of the first plate layer and at the contact surface be- 
=ween layers. Using conditions (2), (3) (Xp, k = 0), we eliminate functions fa(T), qa(r) from 
solution (9) by expressing them through functions fl (T), q:(T). With condition (5), we now 
ob tain 

T~ (X, ~) = - - s  e~t,n (X) fi n) (T) ]~o Xh u~-~ Zh (X, ~), (10) 
n=0 

rt~O 

a~,,, (X) = (X/]/~'[)2"l(2n)!, oJ~,n (X) = (X/V'~-[)zn+"/(2n mt-- 1)!, 

[ (XlV~+ x,tV~ ~" 
f~2,. (X) = ~ (1 -k ~'1.2) (2n)! -~-(1 --~71,2 ) (X/V'~2--Xl/V~)l)2n }' 

(2n)! 

( x /V~-  x,/V~ ~"+' i. 
-}- (1 - -  V l , 2  ) (2n -+- 1)! - I 

where 

1 [ (X/]/~+ xl/V~t) s 
(o2,,, (X) = - 2 / ( 1  -k vx.2) (2n --[- 1)! 

Here Xk(X, T) is a given function, f1(T) is an unknown function, and PI,a = (~i/~2/a~ is 
a dimensionless parameter. For determining function f,(T) we will use condition (6). Insert- 
ing expression (i0) into condition (6) yields an ordinary differential equation for f1(r), 
viz. 3 

N 

a2,n ~ t 2. + - -  
n ~ 0  

We now introduce new unknown functions 

~ o V (  x~ (~, x~). (11) 

Reduction of the infinite series (ii) in n to n = N (N C Z) results in the system of nor- 
mal ordinary differential equations 

dY . /d~  = s (12) 
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where Cn 

N--I 

a = O  

= ~=,n/a= n_~. Considering that [3] 

f~,,) (,~)l,=o _-- ~=,o ( 'Olx=o, n = O, I ,  2 . . . . .  

we find that 

= X* 

Consequently, relation (i0) can be rewritten as 

N--I 

r~, (X, "~) = lira ~ Qh,. (X) r . + ,  - -  (Ro]/-~-~/kh) X~ (X, "r (14) 
rz~0 

where ~,n(X) = flk,n(X)l~a,n(X:). 

Solution (14), with Yn+x determined through integration of the system of ordinary dif- 
ferential equations (12), is the solution to problem (1)-(6) for region D k. Parameter N in 
expression (14) assumes the values N = i, 2, 3, ... so that a set of approximate values can 
be obtained which steadily converge to the exact solution at N + ~. This approach to con- 
structing the solution to problem (1)-(6), unlike the analytical methods [6], avoids a solu- 
tion of intricate multiparameter transcendental equations and is, moreover, more optimal with 
respect to computer time than numerical methods [3]. Solution of a reverse boundary-value 
problem of heat conduction reduces here to extrapolation of solution (14) to the region above 

, 
point X a. Accordingly, the temperature and the thermal flux at the external surface of the 
second plate layer are determined from solution (14): 

N--I 

[~ (T) = lira Z ~2.~ (XI) Y=+I - -  (Ro ]/-~-~/k=) X~ (X=, "r 
N ~  

r t ~ 0  

N--1 (15) 
q~ (~) = (&too)  [ lira ~ ~ , ~  (x~)  r ~ + ~  - ~x~ (x~ ,  ~)], 

where each Yn+~ satisfies system ( !2)  of ordinary differential equations. 

We will now consider another variant of solution of the problem, one which avoids ex- 
trapolation. In opposing systems of coordinates, the Cauchy conditions (7) and (8) char- 
acterize the variation of temperatures and thermal fluxes given at the external surfaces 
of the plate. It is easily ascertained that the solution to the Cauchy problem on this 
basis is solution (9). This solution, together with the conditions of coupling (2) and (3) 
(the latter condition taken with a minus sign), yields the values of functions fx(T) and 
qz(T)  

,gd n, z (~)--  (Ro]/'eJZ=) Z ~ ~(n) (16) = ~ q 2  (% 
n=O n~O 

where 

n~O 

(17) 

Zn= A~,:A2,n_i @ v2.1 ~ BI,iBI,n-~-i, 
i=0 i=0  

7.~ = ~ AI ,/Bl.n-i -[- vl.1 Bl .iAl.n-i; 
i=o i=o 

~n= ~B,.iAI,n-i-J-'2.,~A,.iBI..-i, 
i=o  i=o 

i=o 1=o 
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A,..= (x,/VC,f" (x , /vQ ~"+' 
(2n)! .; B~,,~ = (2n -I- l ) I  ; 

�9 ( x , / V ~  2"+~ ( x J V ~ "  B..,. = 
A2,,, ---- (2n)! ' (2n + 1)! ' 

~.~ V #  8~.  ~.~ ] / / -  8~ w . 2 -  ;~2 ~---7-' v~ ,~=  ;% ~'~ 

Inserting expressions (16) 

where 

and (17) into solution (9)  yields 

n~O n=0 

(2n)! ; ~o2,,,(X) = ( 2 n +  1)! ; 

n n - - I  ~,,,,(x)=~ ( X/v~'  z~ (x/v~2'+' ,~_,_,; 
(2/)! (21 + l ) t  

i=o i=o 

~'=o (2] + 1)! i=o 

(18) 

(19) 

Now, with relation (18) and condition (5), 
and qa(r) the system of ordinary differential equations 

2 " -a~,. (x;) fY~ ('0 - (~oV~%) ~ ~2,~ (x;) q~"~ (~) 
n~O ~ 0  

(6) taken into account, we obtain for f~(T) 

= fi,~ (% 

(20) 

" 2 P"f(~"+' ('0 - -  ( R o / ~ ; ~ )  ~,,q(~'~) ('~) = (Ro]/8=[~/LO q~ ('~). 
n='0 n=O 

Let us split Eqs. (20) so as to separate the functions f2(T) and qa(T). Upon multiplying each 
by the corresponding differential operators and then subtracting the first one from the second 

one) we obtain 

N N 

lim ~ ]  D,~/2 ~) (~) = u~ ('r), lira ~,, Dnq~ 't) (~) = u2 ('~), (21)  
N~,x,  n = 0  N ~ m  ~- -0  

where 

' y__~ "-' (x'~/ V~ ~:+' ~._,_j; D. = (x;/ / ~  ~j ~L-j- 
(2/)~ ( 2 / +  1)~ 

i=o i=o 

~~176 ( ~ > - ( ~ o V ~ , >  ~ ix;/v~.l 2n+' ~:/~); 
ui ('~) = e (2n + I)! 

oo 

We now introduce new unknown functions 

( ~ 1/3) q?,(~)}. 
=o 72~ 

Yi = Do[2, Y~ = Dif'2 ..... YIv = D~-ff(2 N-b, 

-- -- -- r~ ~ ( N - - 1 )  Yi  = Do%, Y2 = Diq~ . . . . .  Y N  = L " N - - 1 V 2  �9 

( 2 2 )  

As a result, system of equations (21) is replaced with the system of normal ordinary 
differential equations 
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dYnld'~ = S , Y n + h  

N - - 1  

dY,vld~ = <v [u,(',:)-- ~ I/'.+,], 
/Z=O 

dFnl&c = s ~ . + l ,  

N - - I  

n=O 

(23) 

( 2 4 )  

where e n = DnlDn+l. 

The initial conditions for system (23), (24) will be stipulated a s  [3] 

r, ,+, l~=o = D,~q~ ~"~ (x)l~=o, 

- ~ '  "~<~"+" (X)fx=o. Y.+ll~=o = (;%IG)~,~w 

Finally, the solution to problem (1)-(6) becomes 
N - - 1  N - - 1  

n=0 n = 0  

(25) 

(26) 

where 

Qk,,~ (X) = Qk,~ (X)/D,~; o)k,~ (X) = cob,,, (X) /O,>  

Thus, the sought temperature of the external surface and the thermal flux supplied to i~ 
are found directly by integration of the independent systems of ordinary differential equa- 
tions (23) and (24), respectively, with the initial conditions (25). 

The just-descrlbed method of solving reverse boundary-value heat-conduction problems can 
be easily extended also to the problem of retrieving the boundary conditions from measurement 
of the temperature at two internal points in the system. 

We replace the boundary condition (5) with a boundary condition of the first kind, viz. 

T~lx=x ~ = [e,, ('r O<X~ <X~, (27) 

where function fe,: (T) characterizes the variation of the temperature with time and is known 
from experiments. We will then use solution (9) to the Cauchy problem, transformed to ex- 
pression (18). Inserting expression (18) into conditions (6) and (26) yields a system of 
ordinary differential equations for the sought unknown functions, viz., 

~ x o g., Q.,.(.)/~"> (~)-- ( . )  h) f~,. (% (28) 
n~0 n~0 

where k = i, 2 and all other symbols are the same as in expression (18). 

Splitting Eq. (28) so as to separate fa(m) and qi(T), we obtain a relation of the (21) 
kind with D n sequences and Uk(T) functions 

n * + * * 

D. = ~2,~ ~ o~,i(X~)fl2,.-i(X~)-- ~ co2,i(X2)~,.-s(X,), 
/=o /=o 

= /e,s  ('c) - -  =,n (X=) ('r ( 2 9 )  
a~0 n~0 

~ 2 ] = [ Z  '<"' /~,, ('0 �9 

n=0 n~0 

The solution to the problem is now finally transformed to expression (26), where each 
Yn+: and Yn+* is determined through integration of system (23), (24) of ordinary differential 
equations with the initial conditions (25) and relations (29). 

In connection with a stability analysis of these solutions to the reverse problem of 
heat conduction, it must be noted that incorrectness manifests itself in the obtained solu- 
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Fig. i. Retrieval of the temperature of the heating surface 
from input data without perturbation and with low-lntenslty 
perturbation: l) exact solution [7]; 2-4) for N = 2, 3, 4, 
respectively, with extrapolation and without perturbation; 5) 
for N = 2, 3, 5 without extrapolation and perturbation; 6, 7) 
for N = 3 and c = 5%, unregularized solution, respectively, 
without and with extrapolation; 8, 9) for N = 3 and ~ = 5% with 
regula~ization and, respectively, without and with extrapola- 
tion. 

Fig. 2. Retrieval of the thermal flux at the heating surface 
from input temperature data with low-intensity perturbation: 
i) exact solution [7]; 2, 3) for N = 3 and ~ = 5% unregular- 
ized solution, respectively, without and with extrapolation; 
4, 5) for N = 3 and ~ = 5% with regularlzatlon and, respec- 
tively, without and with extrapolation. 

TABLE i. Thermophysical Characteristics of 
the Materials of Layers 

Layer 
No. 

1 

2 

0 

R h, I l l  

3.10-a 

5.10-a 
5.10-3 

ah, mZ/sec ~h, W/(m,  
deg) 

0,30864.10 -4 93,04 

0,69450. lO -4 116,3 

0,69450.1 O- 4 

tlons in various forms. Solution (15), e.g., is sensitive to inaccuracies in the input func- 
tion fe, s(T). With a certain level of inaccuracy, there appears in the solution an oscilla- 
tory component of appreciable amplitude. Solution (15) depends also on the intensity and the 
dynamlcity of the thermal experiment, as well as on how close to the surface the temperature 
probes haye been placed. In solution (23)-(26) incorrectness manifests itself in the 
retrieval of derivatives of the grid functlon, this function being known from experiments. 
In order to arrive at correct solutions to reverse boundary-value heat-conduction problems, 
therefore, it is necessary to include in the algorithms constructed here some additional 
regularizing algorithm. An effective algorithm for this is that of smoothing with splines, 
which has been used already [4] for smoothing and thus obtaining a regularized solution to 
a differentiation problem. 

Our algorithm of solving a reverse boundary-value heat-conductlon problem, together with 
the algorithm of smoothing spllnes, has been written in ALGOL-60 language for a model BESM- 
4M hlgh-speed computer. Methodical calculations were made for retrieval of the boundary 
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Fig. 3. Retrieval of the temperature of the heating surface 
from thermal stress input data without and with perturbation: 
i) exact solution [7]; 2-4) for N = 2, 3, 5, respectively, with 
extrapolation and without perturbation; 5-7) for N = 2, 3, 5, 
respectively, without extrapolation and perturbation; 8, 9) 
for N = 3 and e = 5%, unregularizedsolution, respectively, 
without and with extrapolation; i0, ll) for N = 3 and e = 5%, 
with regularlzation and, respectively, without and with ex- 
trapolation. 

Fig. 4. Retrieval of the thermal flux at the heating surface 
from input temperature data with perturbation, in a process 
with thermal stress: l) exact solution [7]; 2, 3) for N = 3 
and ~ = 5%, unregularizedsolution~ respectively, without and 
with extrapolation; 4, 5) for N = 3 and g = 5% with regulariza- 
tion and, respectively, without and with extrapolation. 

conditions at the heating surface of a plane double-layer body. The external surface of the 
second layer was regarded as the heating surface and its internal surface on the side of the 
first layer as a thermally insulated one. The problem was solved in terms of relative tem- 
peratures e(X, T) = T(X,T)/To (To = const) for various values of parameter N characterizing 
the accuracy of the mathematical model. At the first instant of time the system was assumed 
to be heating uniformly (with ~k(X) = 0 in expression (4)), and the experimental temperature 
reading in solution (14), (15), (23)-(26) was stipulated at the contact between layers (X~ = 
0, X~ = Xa). The thermophysical characteristics of the materials are given in Table i. 

The systems (12), (23), and (24) of ordinary differential equations were integrated by 
the Runge-Kutta method, with the integration step AT = 0.001 throughout. For the purpose of 
testing the mathematical model, calculations were made with various exact values of the input 
temperature. The results of the solution are shown in Figs. 1 and 3 (curves 2-5 in Fig. 1 
and curves 2-7 in Fig. 3). The results of solving the reverse problem of heat conduction 
with extrapolation for slowly evolving processes hardly differ from the results of i=s solu- 
tion without extrapolation (Fig. i). For intensive processes there appears a singularity on 
the first time interval, however, viz., series (14) does not converge here. On the same 
diagrams, also in Figs. 2 and 4, are shown the resul=s of solving the reverse heat-transfer 
problem (with N = 3) for various intensities of perturbation of the input temperature and a 
uniform distribution of errors, solutions obtained with and without regularization. Pertur- 
bations of the input function were entered according to the relation 
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with fe(T) denoting the exact temperature, ~ denoting the magnitude of =he entered relative 
error, and ~ denoting a random number generated by the random numbers generator to simulate 
the fluctuation errors of measurements. An analysis of these results confirms the effective- 
ness of the regularization algorithm and the reliability of the solution. A solution with 
extrapolation can, however, be recommended only for slowly evolving thermal processes. In- 
creasing the relative error of input temperatures does not give rise to any other singular- 
ities in the solution to a reverse heat-conduction problem. As the analysis of results (Figs. 
1 and 4) indicates, however, an inaccurate stipulation of the boundary condition for the reg- 
ularizing spline gives rise to appreciable errors in the retrieved boundary functions within 
a finite time interval. In our case the condition S~'(b) = 0 was stipulated for the spline, 
this being correct for steady-state thermal conditions. At the end of the interval, there- 
fore, this condition should correspond to steady-state thermal conditions. 

NOTAT ION 

T, temperature; t, time coordinate; x, space coordinate; and a, thermal diffusivity. 

lo 
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7. 
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ESTIMATES OF THE VALIDITY RANGE FOR THE HYPERBOLIC EQUATION OF 

HEAT-CONDUCTION IN HOMOGENEOUS SYMMETRIC CONTINUOUS BODIES 

K. V. Lakusta and M. P. Lenyuk UDC 536.24.02 

Estimates are made0f the geometrical dimensions of symmetric continuous bodies, 
the temperature fields within which can be described by, respectively, the hyper- 
bolic or the parabolic heat-conduction equation. 

The phenomenological heat-conduction theory has been developed in ~ formulation uniform 
with respect to geometrical variables [i]. An analysis of heat and mass transfer, especially 
when the process is nonsteady and very intensive, leads to a hyperbolic heat-conduction equa- 
tion and has served as a basis for a dynamic heat-conduction theory [2]. 

The problem of de=ermlnlng the structure of =he temperature field in homogeneous sym- 
metric continuous bodies reduces, within the dynamic theory of heat conduction, to that of 
finding within the region D = [0, tl] x ~ = {(t, r), 0~t~_=:, 0 ~r~R} a bounded and 
sufficiently smooth solution to the equation [2] 
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